If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x+49=10
We move all terms to the left:
x^2-14x+49-(10)=0
We add all the numbers together, and all the variables
x^2-14x+39=0
a = 1; b = -14; c = +39;
Δ = b2-4ac
Δ = -142-4·1·39
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{10}}{2*1}=\frac{14-2\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{10}}{2*1}=\frac{14+2\sqrt{10}}{2} $
| 0.05x=35000000 | | 4-1x/2=10 | | 0.055x=35000000 | | 3(2x+3)=-4(4x-4) | | 6(x+3)+2=38 | | 6y-3=6y-3 | | 4*x=(-16) | | 2x+59=83 | | 2(4a=2)-3(2a-4) | | 0.06x=42000000 | | 5x-4-3x=1 | | 9-6x=-27+3x | | t/21=15 | | 8=4(h-3) | | 1/4+(1/3)y=Y | | 3x-(-2x+8)=7x+8 | | 2y+5,2y=360 | | 6x+11=-7x-119-7x | | 6x+11=-7x-119 | | 24-16=-12b+6 | | 6w^2-11w+12=6w | | 76=4x+7x-12 | | 3(y-1.2)=4.8 | | w-24=16+2w | | -2a+44+8a=4a-9a | | 24-5a=6+3a | | 4=b/3- | | 14=-13x+2x | | 4p+25=6 | | 3x+6=-3+6x | | 5w-7=3w+19 | | 4x+18+90=180 |